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A Tailored Semiphysics-Driven Artificial Neural
Network for Electromagnetic Full-Wave Inversion
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Abstract— This article presents a tailored artificial neural
network (ANN) that is designed for electromagnetic (EM) full-
wave inversion (FWI). The ANN includes two subnets. The first
subnet is a physics-driven fully connected neural network in
which the known sensitivity matrix of EM FWI is assigned to the
network model parameters. The second subnet is the traditional
data-driven convolutional neural network (CNN) U-Net. The role
of the first subnet is to convert the scattered EM fields recorded
at the receiver array into the preliminary dielectric images of
the scatterers with the aid of the fast calculation of the graphics
processing unit. Then, the second subnet is used to further refine
the scatterer dielectric parameters. In the off-line training, the
network parameters in the first subnet are frozen, and only the
parameters in the second subnet are optimized. In the online
prediction, the whole ANN is used to directly invert the dielectric
parameters of the scatterers. The proposed semiphysics-driven
ANN is compared with the purely data-driven ANN for the
inversion accuracy, training cost, generalization ability, antinoise
ability, and so on.

Index Terms— Artificial neural network (ANN), convolu-
tional neural network (CNN), electromagnetic (EM) full-wave
inversion (FWI).

I. INTRODUCTION

ELECTROMAGNETIC (EM) full-wave inversion (FWI) is
to reconstruct the unknown scatterer model parameters,

such as locations and dielectric properties by strictly solving
the scattering data equation. It has wide applications in med-
ical imaging and diagnosis [1], nondestructive inspection [2],
security screening [3], geophysical remote sensing [4], and
so on.

Due to the intrinsic nonlinearity of the EM inverse scattering
problem [5], iteration is often adopted to find the optimized
solution of the scatterer model parameters. In addition, because
it is not easy to obtain a priori information of the unknown
scatterers, the whole inversion domain is usually discretized
into a number of grids, and the pixel-based inversion is
employed to solve for the model parameters in all the grids
simultaneously. One of the commonly used pixel-based FWI
methods is to solve the integral equations iteratively [6].
In each iteration of the inversion procedure, the forward
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solver is invoked, and the simulated scattered EM fields at
the receiver array are updated. Then, the model parameters in
all the pixels of the inversion domain are adjusted according
to the mismatch between the simulated scattered EM fields
and the measured ones [7]. This process continues until the
mismatch becomes lower than a prescribed threshold or the
maximum iteration number is achieved. Previous researchers
have developed several iterative methods in this framework.
For example, in the Born iteration method (BIM) [8], the
state and data equations are solved alternately. The model
parameters of the scatterers are directly updated in each
iteration. BIM has the variants of variational BIM (VBIM) and
distorted BIM (DBIM) [8], [9]. They are different from BIM
since the perturbations of the model parameters are updated
in each iteration instead of the model parameters themselves.
Compared with BIM, DBIM and VBIM can reach higher
inversion accuracy due to the tiny adjustments of the model
parameters in each iteration. Contrast source inversion (CSI)
is another type of FWI method [10]. Different from the Born-
type methods, it has no forward computation, and the contrast
and the contrast source are updated alternately until their
total mismatch is minimized [11]. The subspace optimization
method (SOM) [12] is similar to CSI. However, the induced
current is decomposed into the deterministic part and the
ambiguous part by singular value decomposition (SVD). The
iteration is implemented in the subspace. It converges faster
than CSI and has a more robust antinoise ability [13]. These
pixel-based iterative FWI methods work efficiently for the
reconstruction of scatterers with irregular shapes and arbitrary
parameter distribution. However, the iteration also leads to
high computational costs. This becomes more obvious when
the scatterer has a large electrical size, and the inversion
domain is discretized into a large number of grids.

Neural network-based FWI is a hot topic in recent years
since it can, to a large extent, effectively circumvent the
iteration and lower the computational cost. Chen et al. [14] and
Massa et al. [15] classified it into four categories, the direct
learning approach, the physics-assisted learning approach,
the learning-assisted objective-function approach, and other
approaches. Direct learning is the most straightforward method
since it directly converts the scattered fields into the scatterer
model parameters. All the physical parameters and mecha-
nisms of EM inverse scattering are implicitly included in the
neural network, which is realized by the off-line training. Rep-
resentative research works have been presented in [16]–[18].
The drawback of direct learning is that the network must spend

0018-926X © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

 

https://orcid.org/0000-0002-3411-5573


6208 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 70, NO. 8, AUGUST 2022

an unnecessary cost to train and learn the underlying wave
physics of EM scattering. This intuitively increases both the
network complexity and training cost. Therefore, researchers
proposed the physics-assisted learning approach in which the
scattered fields are first converted into preliminary dielectric
images of the scatterers by using traditional approximate
inverse solvers, e.g., Born approximation (BA) or backpropa-
gation (BP), and thus, both the input and output of the neural
network are the model parameter spatial distribution. The net-
work only deals with pure images with gray values and has no
relationship with physics. Typical inversion results have been
shown in [16] and [19]–[24]. The learning-assisted objective-
function approach is another type of hybrid method, but it
is opposite to the physics-assisted learning approach. It uses
the neural network to obtain the preliminary dielectric images
of the scatterers first and then implements the traditional
iterative methods to refine the model parameters [25]–[27].
Strictly speaking, among all these neural network-based FWI
methods, only inversion by the direct learning approach is
instantaneous. Although the approximate inverse solver in the
physics-assisted learning approach is also fast, it still needs
some time for the central processing unit (CPU) to accomplish
the pixel-based inversion since the multiplication of matrices
and vectors is usually necessary to acquire the solutions.
However, the training cost of the direct learning approach
is intuitively higher than that of the physics-assisted learning
approach since the network is completely data-driven, and it
must learn the physics of EM inverse scattering.

In this article, we propose a tailored artificial neural net-
work (ANN) in which some known EM scattering physical
variables are explicitly embedded. That is to say, the ANN is
partially physics-driven instead of purely data-driven. Specif-
ically speaking, we divide the whole ANN into two subnets.
The first subnet is a fully connected neural network (FCNN)
with the activation function removed. The approximate sen-
sitivity matrix of the EM FWI is fixed inside it. It performs
like the BA solver in the physics-assisted learning approach
and converts the scattered field data into preliminary scatterer
model parameters. In order to reduce the number of network
parameters in the first subnet, we apply the principal compo-
nent analysis (PCA) to reduce the dimension of the sensitivity
matrix. The second subnet is the standard convolutional neural
network (CNN) U-Net that is used to further enhance the
accuracy of the inverted scatterer model parameters. It is
worth mentioning that the proposed ANN-based inversion is
different from the direct learning approach because the known
sensitivity matrix is explicitly embedded inside the ANN,
and there is no need to learn it in the training. It is also
different from the physics-assisted learning approach since
the preliminary scatterer model parameters are obtained by
a neural network. The conversion can be instantaneous since
the graphics processing unit (GPU) instead of CPU is used
to accomplish the multiplication of the matrix and the vector.
This design guarantees both the real-time inversion merit of
the direct learning approach and the low training cost of
the physics-assisted learning approach. Compared with the
design of cascaded CNNs given in [24], the first subnet in our
semiphysics-driven ANN is the direct BA solver and needs no

training. Its weight is determined by the PCA of the sensitivity
matrix and remains unchanged in the training process. By con-
trast, the first subnet in [24] is trained by BP labels. In addition,
the second subnet in our semiphysics-driven ANN is only
trained by the final permittivity images. However, in [24], the
second part includes several cascaded CNNs and is trained
with several multiresolution labels by gradually incorporating
the high-frequency components. In addition, compared with
the two-step deep learning scheme presented in [17], the first
subnet in our semiphysics-driven ANN is purely physics-
driven. It needs no training and behaves the same as the BA
solver. By contrast, the first subnet in [24] must be trained to
optimize its network parameters, e.g., weights. The weights of
the first subnet in our semiphysics-driven ANN are only solved
once by PCA and embedded inside the network in the whole
training and prediction process. The PCA operation is offline
and will not raise the complexity of the whole procedure.

The rest of this article is organized as follows.
In Section II, we briefly introduce the architecture design of
the semiphysics-driven ANN and compare it with the purely
data-driven ANN. The way to embed the sensitivity matrix
of the BA inverse solver into the semiphysics-driven ANN is
also discussed in detail. In Section III, a series of numerical
experiments are implemented to justify the superiority of
the proposed semiphysics-driven ANN with respect to the
purely data-driven ANN. In addition, its drawbacks are also
discussed. In Section IV, the proposed ANN is used to invert
laboratory-measured data. In Section V, conclusions, discus-
sions, and future work are presented.

II. THEORY

In this section, we briefly introduce the architectures of
the semiphysics-driven and purely data-driven ANNs, the
reduction of the sensitivity matrix dimension, and the network
training configuration.

A. ANN Architectures

As shown in Fig. 1, the semiphysics- and purely data-driven
ANNs have the same framework. Both of them include two
subnets. The first subnet includes two fully connected layers.
It has no bias value and activation function. The second subnet
is a traditional CNN U-Net. The only difference between the
two ANNs lies in the weight values of the first subnet. In the
semiphysics-driven ANN, the sensitivity matrix elements of
BA are assigned to the weights. They are known and fixed
in the training process. The first subnet is used to imitate
the calculation process of BA and obtains the preliminary
scatterer model parameters from the scattered field data.
However, because the dimension of the sensitivity matrix S
is too large, directly embedding it into the first subnet will
increase the capacity of the network. We use PCA to reduce
its dimension. The compressed sensitivity matrix is denoted by
SPCA, as shown in Fig. 1(a), where the superscript −1 stands
for the matrix inverse. Uproj is the projection matrix, and its
specific derivation will be discussed in Section II-B.

By contrast, in the purely data-driven ANN, the first subnet
is to obtain the hidden feature map through two trainable
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Fig. 1. Architectures of the ANNs. (a) Semiphysics-driven architecture. (b) Purely data-driven architecture.

fully connected layer weights W1 and W2, as shown in
Fig. 1(b). One should note that W1 and W2 are optimized
in the training process and have no relationship with any EM
scattering physics. Their dimensions are the same as those of
S−1

PCA and Uproj, respectively. The second subnet U-Nets in
the two architectures are exactly identical. They include the
encoder and the decoder. The encoder consists of four same
modules for feature extraction. Each module includes two
3 × 3 convolution layers using the ReLu activation function
and a 2 × 2 maximum pooling layer. Following each encoder
module, the number of feature map channels is doubled, and
the size is reduced by half. The decoder consists of four same
modules to restore the original image resolution. Each module
includes a 2×2 upsampling convolution layer using the ReLu
activation function and two 3 ×3 convolution layers using the
ReLu activation function. The last layer of the network is a
1 × 1 convolution layer without activation function. The jump
connection between the encoder layer and the decoder layer
can concatenate the high-level features and low-level features
extracted from the network together to remedy the information
loss in the downsampling. The details of the U-Net design
can be found in [28]. The input of the whole ANN is the
measured scattered field vector. Through the two-layer FCNN,
it is transformed into the BA image or hidden feature image,
and then, the final inversion result is obtained through U-Net.

B. Reducing Sensitivity Matrix Dimension

The schematic of the 2-D FWI model configuration is shown
in Fig. 2. It is assumed that there are Nt transmitters and Nr

receivers uniformly placed in a circle surrounding the inversion
domain D. The scatterer with the relative permittivity εr is
embedded inside the domain D. The background medium is
free space. In the forward scattering computation, εr of the
scatterer is known, and the total field Etot

y in the inversion

Fig. 2. 2-D FWI model configuration. There are Nt transmitters and Nr
receivers placed around the inversion domain D.

domain D is solved for by the state equation, which is
expressed as

Einc
y (ρ) = Etot

y (ρ) − jωε0

∫
D

g(ρ,ρ �)[εr(ρ
�) − 1]

× Etot
y (ρ �)dρ� (1)

where Einc
y is the incident field in the inversion domain D

when the scatterer is absent. In the inverse scattering com-
putation, the model parameter εr is solved from the scattered
field Esct

y recorded at the receiver array by the data equation,
which is expressed as

Esct
y (ρ) = jωε0

∫
D

g(ρ,ρ �)[εr(ρ
�) − 1]Etot

y (ρ �)dρ � (2)

where g is the 2-D scalar Green’s function. It is expressed
as [29]

g(ρ,ρ �) = −ωμ0

4
H (2)

0 (k0|ρ − ρ �|) (3)
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where H (2)
0 is the zeroth-order Hankel function of the second

kind and k0 = ω
√

ε0μ0 is the wavenumber in the free space.
It can be seen from the state equation (1) that the total

field Etot
y depends on the model parameter εr . Therefore,

the data equation (2) is nonlinear. In the traditional iterative
inversion, the total field can be updated by the forward
scattering computation in each iteration [30]. However, in the
ANN inversion, there is no iteration and the sensitivity matrix
is fixed. Thus, we use the BA, i.e., use the incident field to
replace the total field, and the data equation becomes

Esct
y (ρ) ≈ jωε0

∫
D

g(ρ,ρ �)[εr(ρ
�) − 1]Einc

y (ρ �)dρ �. (4)

We then divide the inversion domain D into Nx × Nz discrete
grids and arrange the scattered fields for all the transmitters
and receivers in a vector. Equation (4) can be discretized into

b� = S�x (5)

where

b� = [
Esct

y (ρ ir ,ρ it )
] ∈ C

(Nt Nr ,1) (6a)

S� = jω�S
[
g
(
ρir ,ρ

�
i x,iz

)
Einc

y

(
ρ �

i x,iz,ρit

)]
∈ C

(Nt Nr ,Nx Nz) (6b)

x = [
εr

(
ρ �

i x,iz

) − 1
] ∈ R

(Nx Nz,1). (6c)

One should note that, in (6), i t ∈ [1, Nt ], ir ∈ [1, Nr ],
i x ∈ [1, Nx ], and iz ∈ [1, Nz] are the indexes of transmitters,
receivers, discrete grids in the x̂ direction, and discrete grids
in the ẑ direction, respectively. The sensitivity matrix S� is
the same for all training samples since the incident field is
the same. �S is the area of a discrete grid. Equation (5) is a
complex-number equation, and a real-number equation can be
obtained by splitting it

b = Sx (7)

where

b =
[

Re(b�)
Im(b�)

]
∈ R

(2Nt Nr ,1) (8a)

S =
[

Re(S�)
Im(S�)

]
∈ R

(2Nt Nr ,Nx Nz). (8b)

The sensitivity matrix S has a large dimension. Directly
embedding it into the first subnet of the semiphysics-driven
ANN shown in Fig. 1(a) will lead to a large number of network
model parameters. We use PCA to transform S into SPCA,
remove the redundant information, and reduce the dimension
of S. First, the covariance matrix cov(S) of S is obtained.
Then, the spectral decomposition (SD) of cov(S) is performed.
The eigenvalue matrix � and the eigenvector matrix U are
rearranged in the order of eigenvalues from large to small.
Finally, the first K columns of the eigenvalue matrix U can
be taken as the projection matrix Uproj ∈ R(Nx Nz,K ) if SPCA

has the dimensions of 2Nt Nr × K . This procedure can be
expressed by the following equations:

cov(S) = (S − mean(S))T(S − mean(S)) (9a)

U�UT = cov(S) (9b)

Uproj = U[:, 1 : K ] (9c)

where the value of K is usually determined by how much
variance information is retained. In this work, the value of
K corresponds to retaining 99% variance information, which
means that

K∑
i=1

σi,i

Nx Nz∑
i=1

σi,i

≥ 0.99 (10)

where σi,i is the i th diagonal element of the matrix � ∈
R(Nx Nz,Nx Nz). Note the diagonal elements of � are arranged in
the descending sequence. Finally, the compressed sensitivity
matrix SPCA and the Born approximate solution x can be
acquired by the following equations:

SPCA = SUproj (11a)

xPCA = S−1
PCAb (11b)

x = UprojxPCA. (11c)

C. ANN Training Consideration

In this article, the MNIST [31], which is a database of
handwriting digits widely used in the field of machine learn-
ing, is employed to train both the semiphysics- and purely
data-driven ANNs. The scattered field data are simulated
by the stabilized biconjugate-gradient fast Fourier transform
(BCGS-FFT) forward solver. The details can be found in [32]
and will not be repeated here. In the training process, the
parameters of the first subnet in the semiphysics-driven ANN
are frozen, and only the U-Net following the first subnet is
optimized. That is to say, S−1

PCA and Uproj shown in Fig. 1(a)
are kept fixed in the training. The output of the first subnet is
x = UprojS

−1
PCAb. By contrast, in the purely data-driven ANN,

both W1 and W2 in the first subnet and the following U-Net
are optimized simultaneously in the training. The output of its
first subnet is x = W2W1b.

The loss function of two ANNs is the mean square error
(mse), which is expressed as [33]

mse = 1

2N Nx Nz

N Nx Nz∑
i=1

�yi − ŷi�2 (12)

where N is the total number of training samples and yi is
the inverted permittivity value in a certain discrete grid, while
ŷi is the corresponding label. The optimizer adopted in this
work is Adam [34]. The learning rate is 0.001. The number of
training epochs is 500. The batch size is 32. These parameters
are the same for all the following numerical examples.

III. NUMERICAL RESULTS

In this section, we use three numerical cases to
validate the advantages and disadvantages of the proposed
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Fig. 3. First 80 eigenvalues of the covariance matrix cov(S).

semiphysics-driven ANN by comparing it with the purely data-
driven ANN. As shown in Fig. 2, there are totally 36 trans-
mitters and 36 receivers uniformly placed on a circle with a
radius of 3 m. The operating frequency is 300 MHz. Note
that the layouts of the transmitter and receiver arrays roughly
follow the Nyquist law, i.e., every transmitter or receiver is
placed in a half-wavelength interval. The inversion domain
with its center located at the origin has the dimensions of
1.92 m × 1.92 m and is divided into 96 × 96 pixels. Thus,
the dimension of the sensitivity matrix S in (8b) is 96 ×
96 × 36 × 36 × 2 = 23 887 872. We then do the SD of
the covariance matrix of the sensitivity matrix S, and the
first 80 eigenvalues are displayed in Fig. 3. If we use PCA
to reduce the dimension and choose K = 68 to retain 99%
variance information, the first subnet in the semiphysics-driven
ANN becomes a two-layer FCNN in which S−1

PCA and Uproj

are embedded. The total parameters are reduced to 96 × 96 ×
68 + 36 × 36 × 2 × 68 = 802 944, which is only 3.36% of the
original amount. In addition, it should be mentioned that the
U-Net connected to the first subnet includes 241 657 network
parameters, which only take 23% of the total ANN parameters’
amount. This also implies that the number of the trainable
network parameters of the semiphysics-driven ANN is 23%
of that of the purely data-driven ANN. Another interesting
comparison is the computation time of the first subnet of
the semiphysics-driven ANN with and without PCA applied.
Numerical results show that it takes 0.28 s when PCA is
applied but 0.38 s without PCA used to predict 3000 samples.

In the first numerical case, both ANNs are trained by the
same MNIST datasets with a different number of samples.
Both the inversion accuracy for scatterers with different con-
trasts and the training costs for the different number of samples
are compared. In the second case, 400 handwritten letters with
different contrasts are used to further test the generalization
ability of two trained ANNs. In the third case, the antinoise
ability of two ANNs is compared.

In addition, in order to quantitatively evaluate the inversion
performance of the proposed ANN, we use the data misfit
and model misfit defined in [35, eqs. (16) and (17)]. The data
misfit indicates how well the measured scattered fields match
the predicted scattered fields. The model misfit indicates how
well the reconstructed model parameters match the true model
parameters. All the numerical experiments are performed on
a workstation with 20-core Xeon E2650 v3 2.3 GHz CPU

Fig. 4. Ground truths of the digit “9” and the inversion results by the
semiphysics-driven ANN for different contrasts when it is trained by datasets
with different sizes. The true relative permittivity values of four digits from
the first row to the fourth row are 1.5, 2.0, 2.5, and 3.0.

Fig. 5. Ground truths of the digit “9” and the inversion results by the purely
data-driven ANN for different contrasts when it is trained by datasets with
different sizes. The true relative permittivity values of four digits from the
first row to the fourth row are 1.5, 2.0, 2.5, and 3.0.

and 512 GB RAM. ANNs are trained on an NVIDIA Geforce
RTX3090 GPU with 24 GB memory.

A. Case 1: Handwritten Numerals

The purpose of this case is to compare the inversion accu-
racy and training cost of two types of ANNs. We use the same
handwritten numeral dataset to train both the semiphysics-
and purely data-driven ANNs. The relative permittivity of the
scatterer varies between 1.2 and 3.0 in the dataset. The sizes
of the datasets are chosen as N = 50, N = 100, N = 200,
N = 500, and N = 1000, respectively.

The digit “9” is selected to test the inversion accuracy of the
semiphysics-driven ANN by comparing its results with those
from the purely data-driven ANN. Fig. 4 shows the recon-
structed scatterer profiles by the semiphysics-driven ANN.
From the first row to the fourth row, the results correspond to
the scatterer εr = 1.5, 2.0, 2.5, and 3.0, respectively. The first
column shows the ground truths. From the second column to
the sixth column, the results correspond to the training dataset
with the size of N = 50, 100, 200, 500, and 1000, respectively.
In a similar way, Fig. 5 displays the inversion results by
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TABLE I

MODEL MISFITS (%) OF THE RECONSTRUCTED SCATTERER PROFILES FOR DIFFERENT CONTRASTS WHEN TRAINING DATASETS HAVE DIFFERENT SIZES

Fig. 6. BA results of the digit “9” for different contrasts by the first subnet
in the semiphysics-driven ANN and the hidden feature maps extracted by the
first subnet in the purely data-driven ANN when it is trained by datasets with
different sizes. The first column shows the BA inversion results. Columns 2–6
show the hidden feature maps. Rows 1–4 are for different contrast values
corresponding to those shown in Fig. 4 or 5.

the purely data-driven ANN. Fig. 6 shows the reconstructed
profiles by the first subnet. The first column shows the BA
results that are generated by the first subnet of the semiphysics-
driven ANN. Columns 2–6 show the extracted hidden feature
maps by the first subnet of the purely data-driven ANN for
the training datasets with different sizes.

We then study how the contrast of the scatterer and the
training dataset size affect the inversion accuracy and also
compare the effect of the semiphysics-driven ANN and that
of purely data-driven ANN.

1) Scatterer Contrast Effect: It can be seen from Fig. 4 that,
with the increase in the scatterer contrast, the inversion results
by the semiphysics-driven ANN become worse and worse.
This is caused by the BA solver in the first subnet, as shown
in the first column of Fig. 6. When the contrast of the scatterer
becomes large, the BA results deviate away from the true
scatterer profiles severely. In this situation, even the trained
U-Net cannot effectively recover the profiles. An interesting
observation is that the results from the purely data-driven ANN
also show similar variation trends although it has nothing to
do with EM scattering physics, as shown in Fig. 5. This is
because the nonlinearity of the EM scattering becomes more
obvious when the contrast of the scatterer becomes larger. As a
result, it is more difficult to optimize the network parameters
in the training. Of course, this is only manifested in the final
inversion results. The intermediate results of the ANN, e.g., the
extracted hidden feature maps shown in Fig. 6, do not display
obvious discrepancies for different contrasts. In the purely

data-driven ANN, the intermediate results have no definite
physical meaning. Therefore, it is hard to say how they depend
on the contrast of the scatterer.

2) Training Size Effect: By comparing the results shown in
different columns of Figs. 4–6, we can see how the training
dataset size affects the inversion performance. A larger training
dataset, no matter for the semiphysics- or purely data-driven
ANN, usually makes the inversion results better. This is
because the network parameters are more fully optimized if
more training samples are used in the training. As shown in
Fig. 4(n)–(r), the reconstructed profile is poor for the scatterer
with εr = 2.5 when the training dataset size is 50. However,
the inverted model parameter of the scatterer approaches the
true value when the size increases to 1000. That is to say,
the trained U-Net is capable of remedying the loss of the BA
solution. Similar phenomena also occur in the inversion by
the purely data-driven ANN. As shown in Fig. 5(t)–(x), even
for the scatterer with high contrast, the reconstructed profile
becomes better when N increases. The ANN has the ability
to learn the nonlinear relationship between the scattered field
data and the scatterer model parameters if there are enough
training samples. This is also illustrated by the last column
shown in Fig. 6. We can see that the first subnet in the purely
data-driven ANN can capture the preliminary image maps
when N = 1000.

3) Comparison of Two ANNs: As discussed above, both the
scatterer contrast and the training dataset size have significant
impacts on the inversion accuracy. However, they show obvi-
ously different characteristics for the semiphysics- and purely
data-driven ANNs.

For a low contrast scatterer, when the training dataset size
is small, the semiphysics-driven ANN outperforms the purely
data-driven ANN. This is shown by the subfigures in the
top left corners of Figs. 4 and 5. It is also quantitatively
proved by the model misfits listed in Table I. Nevertheless,
this superiority gradually disappears as the training dataset
size increases. For example, when the scatterer has the relative
permittivity εr = 2.0, the model misfit of the reconstructed
profile by the semiphysics-driven ANN is 10.24% if N = 100,
which is obviously less than the model misfit 14.15% of the
reconstructed profile by the purely data-driven ANN. However,
when the training dataset size increases to N = 1000, they
are almost the same, as listed in Table I. The reason for the
aforementioned comparisons is given as follows. For a low
contrast scatterer, the BA solver in the semiphysics-driven
ANN is able to provide good preliminary profiles for the
following U-Net, as shown in Fig. 6(a) and (g). As a
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Fig. 7. Comparisons of convergence curves for the training and validation of two ANNs when the datasets have different sizes. (a) N = 50. (b) N = 100.
(c) N = 200. (d) N = 500. (e) N = 1000.

consequence, the U-Net can produce inverted scatterer para-
meters with low errors even when the training dataset size is
small. This is obviously shown by Fig. 4(c) and (i). By con-
trast, as shown in Fig. 5(c) and (i), the purely data-driven ANN
fails to produce reliable reconstructed scatterer profiles in the
online prediction if the training dataset size is limited. This is
because the purely data-driven ANN lacks auxiliary physics
to extract the preliminary scatterer profiles from the scattered
field data and, thus, heavily depends on the training data. As a
result, the ANN is not adequately trained, and the final inverted
scatterer parameters will show large errors. Fortunately, this
can be effectively improved if we increase the training dataset
size N and let the ANN be fully trained, as shown by the
subfigures in the top right corners of Figs. 4 and 5. This point
is also verified by the hidden feature maps extracted by the
first subnet in the purely data-driven ANN shown in the last
column of Fig. 6. We can see that just the first subnet will
generate good preliminary profiles if N is increased to 1000.

For a high contrast scatterer, when the training dataset size
is small, both the semiphysics-driven ANN and the purely
data-driven ANN fail to reconstruct the scatterer model para-
meters, as shown by the subfigures in the bottom left corners
of Figs. 4 and 5. This is also proved by the large model misfit
values listed in Table I. Such a failure is caused by the intrinsic
nonlinearity of the EM inverse scattering problem. Either the
BA solver or the trained ANN cannot effectively overcome
the strong nonlinearity if N is too small. With the increase in
the training dataset size, the purely data-driven ANN gradually
outperforms the semiphysics-driven ANN, which is shown by
subfigures in the bottom right corners of Figs. 4 and 5. That is
to say, the whole purely data-driven ANN is effectively trained
to fit the nonlinear relationship between the scattered field
data and scatterer model parameters when N is large enough.
However, in the semiphysics-driven ANN, the network model
parameters in the first subnet, the BA solver, are fixed in the
training. It cannot effectively overcome the nonlinearity even if
the training dataset size is increased. In this situation, the final
inversion results by the following U-Net are still not obviously
improved from the poor inversion results by the BA solver
even though the U-Net is trained by 1000 samples. This is
vividly shown by the comparison between Figs. 4(x) and 5(x)
and the corresponding model misfits listed in Table I.

Fig. 7 shows the loss function convergence curves for
the training and validation of two types of ANNs when the
datasets have different sizes. Because scatterers with different
contrast values are present in both the training and validation
datasets, the mse values in different training epochs have no
obvious difference for the semiphysics-driven ANN and the

purely data-driven ANN. When the training dataset has the
size of N = 50, the validation mse of the semiphysics-driven
ANN converges below that of the purely data-driven ANN,
as shown in Fig. 7(a). This indicates that the performance
of the semiphysics-driven ANN is slightly better than that
of the purely data-driven ANN when the training dataset
size is small. When the training dataset size increases to
N = 1000, the validation mse of the purely data-driven
ANN converges below that of the semiphysics-driven ANN,
as shown in Fig. 7(e). This shows that, in this situation, the
performance of the purely data-driven ANN is better than that
of the semiphysics-driven ANN. Fig. 7(a)–(e) shows that, with
the increase in the training dataset size, the performance of the
purely data-driven ANN gradually catches up with and exceeds
that of the semiphysics-driven ANN.

Another important issue that we want to emphasize here
is the training time cost for different dataset sizes and the
comparison between two types of ANNs. Because the memory
of GPU is limited, we only feed the ANN 32 training samples
each time. Therefore, training 1000 samples are significantly
more time-consuming than training 50 samples. However,
numerical experiments show that the training time in each
epoch is almost the same for both types of ANNs if the dataset
size is the same although the purely data-driven ANN contains
much more network parameters to be optimized than those of
the semiphysics-driven ANN. Therefore, in order to achieve
the same inversion accuracy, the purely data-driven ANN has
a higher training cost than the semiphysics-driven ANN. This
is especially obvious when the scatterer contrast is low.

B. Case 2: Handwritten Letters

In this case, in order to compare the generaliza-
tion ability of the two ANNs, we use 100 handwrit-
ten letters “A” with εr = 1.5, 100 handwritten letters
“B” with εr = 2.0, 100 handwritten letters “E” with
εr = 2.5, and 100 handwritten letters “K” with εr = 3.0 as
the testing datasets. Fig. 8 shows the scatter plots of model
misfits and data misfits of 100 reconstructed profiles. The data
misfits are computed by the forward BCGS-FFT solver. For
the letter “A” with εr = 1.5, as shown in the first row of
Fig. 8, most blue triangles fall into the lower left regions of
the red dots, which means that both the model misfits and
data misfits of the inverted profiles by the semiphysics-driven
ANN are less than those by the purely data-driven ANN.
That is to say, the semiphysics-driven ANN has a stronger
generalization ability than the purely data-driven ability when
scatterer εr = 1.5. However, we can also see that, with the
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Fig. 8. Scatter plots of data misfits and model misfits of 100 reconstructed scatterer profiles by two ANNs. The first row is for the letters “A” with εr = 1.5.
The second row is for the letters “B” with εr = 2.0. The third row is for the letters “E” with εr = 2.5. The fourth row is for the letters “K” with εr = 3.0.
(a), (f), (k), and (p) N = 50. (b), (g), (l), and (q) N = 100. (c), (h), (m), and (r) N = 200. (d), (i), (n), and (s) N = 500. (e), (j), (o), and (t) N = 1000.

increase in the training dataset size, the blue triangles and the
red dots gradually mix together. This means the generalization
ability superiority of the semiphysics-driven ANN gradually
losses. When we increase the scatterer permittivity to εr =
2.0 and 2.5, as shown in the second and third rows for the
letters “B” and “E,” this superiority is only maintained for
the training dataset size N = 50. When N is larger than 50,
as shown in Fig. 8(g)–(j) and (l)–(o), it is hard to say the
semiphysics-driven ANN outperforms the purely data-driven
ANN since the blue triangles and red dots mix together. For
the letter “E” with εr = 2.5, the purely data-driven ANN
actually slightly outperforms the semiphysics-driven ANN
when N = 1000, as shown in Fig. 8(o). For the letter “K” with
εr = 3.0, the purely data-driven ANN definitely outperforms
the semiphysics-driven ANN, which is displayed in the last
row of Fig. 8.

In order to more directly compare the generalization ability
of two ANNs, we then choose four different specific sam-
ples from four testing sets, respectively. Fig. 9 shows the
selected inversion results by the semiphysics-driven ANN,
while Fig. 10 shows the selected inversion results by the purely
data-driven ANN. Fig. 11 shows the outputs of the first subnet.
The first column displays the results of BA, and the second
to sixth columns display the hidden feature maps extracted by
the first subnet of the purely data-driven ANN. By comparing

Fig. 9. Ground truths of the letter “A” with εr = 1.5, “B” with εr = 2.0,
“E” with εr = 2.5, “K” with εr = 3.0, and the corresponding inversion
result by the semiphysics-driven ANN when it is trained by datasets with
different sizes. (a), (g), (m), and (s) Ground truth. (b), (h), (n), and (t) N = 50.
(c), (i), (o), and (u) N = 100. (d), (j), (p), and (v) N = 200. (e), (k), (q), and
(w) N = 500. (f), (l), (r), and (x) N = 1000.

the first two rows in Figs. 9 and 10, we can see that the
semiphysics-driven ANN has a stronger generalization ability
than the purely data-driven ANN when the scatterer εr ≤ 2.0,
which is especially obvious if the training dataset size is small.
This is because the BA solver only depends on EM scattering
physics and has no relationship with training data. Its gener-
alization ability is theoretically infinitely large. Therefore, the
superiority of the whole semiphysics-driven ANN is directly

 



CHEN et al.: TAILORED SEMIPHYSICS-DRIVEN ANN FOR ELECTROMAGNETIC FULL-WAVE INVERSION 6215

Fig. 10. Ground truths of the letter “A” with εr = 1.5, “B” with εr = 2.0,
“E” with εr = 2.5, “K” with εr = 3.0, and the corresponding inversion
result by the purely data-driven ANN when it is trained by datasets with
different sizes. (a), (g), (m), and (s) Ground truth. (b), (h), (n), and (t) N = 50.
(c), (i), (o), and (u) N = 100. (d), (j), (p), and (v) N = 200. (e), (k), (q), and
(w) N = 500. (f), (l), (r), and (x) N = 1000.

Fig. 11. BA results of four letters by the first subnet in the semiphysics-driven
ANN and the hidden feature maps extracted by the first subnet in the purely
data-driven ANN when it is trained by datasets with different sizes. The first
column shows the BA inversion results of four letters. Columns 2–6 show the
hidden feature maps. Rows 1–4 are for the letter “A” with εr = 1.5, “B” with
εr = 2.0, “E” with εr = 2.5, and “K” with εr = 3.0, respectively. (a), (g),
(m), and (s) BA. (b), (h), (n), and (t) N = 50. (c), (i), (o), and (u) N = 100.
(d), (j), (p), and (v) N = 200. (e), (k), (q), and (w) N = 500. (f), (l), (r), and
(x) N = 1000.

manifested when the scatterer contrast is low, and the training
dataset size is small. However, when the dataset size becomes
large, its advantage is weakened. The hidden feature maps
extracted by the first subnet in the purely data-driven ANN also
show good preliminary profiles, as shown in Fig. 11(f) and (l).
When the scatterer εr is larger than 2.0, the semiphysics-driven
ANN has a poor generalization ability, as shown in the third
and fourth rows of Fig. 9. This is because the BA results of
scatterers with high contrasts are poor, which are shown in
Fig. 11(m) and (s). In this situation, the U-Net connecting to
the BA solver cannot distinguish the severely distorted testing
letters that are far from the digits in the training datasets. This
drawback is effectively overcome by the purely data-driven
ANN, supposing that it is trained by enough samples, as shown
in Fig. 10(r) and (x). The first subnet of the purely data-driven
ANN that takes around 76% amount of the parameters of the
whole ANN is fully optimized in the training process when
the dataset size is large. Therefore, it has stronger adaptability
to scatterers with high contrasts than the BA solver.

Fig. 12. Ground truths of the digit “3” with the relative permittivity of
2.0 and the inversion results by two ANNs for different training dataset
sizes when the scattered field data are contaminated by 10 dB noise. The
results in the first row are reconstructed by the semiphysics-driven ANN. The
results in the second row are reconstructed by the purely data-driven ANN.
(a) and (g) Ground truth. (b) and (h) N = 50. (c) and (i) N = 100. (d) and
(j) N = 200. (e) and (k) N = 500. (f) and (l) N = 1000.

C. Case 3: Comparison of the Antinoise Ability of Two ANNs

In this case, we compare the antinoise ability of two ANNs
by using them to invert the simulated scattered field data
contaminated by 10 dB noise. Here, the noise level is defined
according to the signal-to-noise ratio (SNR) of power. Fig. 12
shows the reconstruction results of the digit “3” with the
relative permittivity 2.0. The first row and the second row
represent the inversion results of the semiphysics-driven ANN
and the purely data-driven ANN, respectively. It can be seen
that both ANNs have the strong antinoise ability, and their
inversion performance is hardly affected even by 10 dB noise.
The neural network can naturally suppress the noise effect.
Therefore, in the presence of noise, the inversion performance
comparison between two ANNs is basically consistent with
the conclusion for the previous noise-free cases.

IV. INVERSION OF LABORATORY-MEASURED DATA

In this section, we use the experimental data measured at the
Institute Fresnel [36] to further test two ANNs. The transmitter
arrays and the receiver arrays are, respectively, placed on a
circle with the radius of 0.72 and 0.76 m surrounding the
“twodielTM” profile with the relative permittivity of 3.0. The
operating frequency is 3 GHz. Totally, 36 transmitters are used
to radiate EM waves, and 49 receivers are used to record data.
The measured data are calibrated by multiplying them with
a single complex-valued coefficient, which is derived from
the ratio of the measured incident field and the simulated
one at the receiver located at the opposite position of the
source [16], [37]. The inversion domain is set to be 0.192 m ×
0.192 m and is discretized into 96 × 96 pixels. We use the
same transmitter and receiver configuration of the experiment
to generate simulated training data. Multiple scatterers are
allowed to present in the inversion domain. Meanwhile, con-
sidering the difference between the measured scattered fields
and the simulated scattered fields, we add random noise to the
simulated scattered field data in the training dataset.

Fig. 13 shows the reconstructed profiles of two cylinders
by two ANNs when they are trained by datasets with dif-
ferent sizes. It can be seen that both ANNs can invert the
experimental data. However, because of the simple shapes and
small electrical sizes of the scatterers, two ANNs can obtain
good inversion results even when the training dataset only has
50 samples. In addition, it is noted that the semiphysics-driven
ANN outperforms the purely data-driven ANN when the
training dataset size is small, e.g., when N = 100. Meanwhile,

 



6216 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 70, NO. 8, AUGUST 2022

Fig. 13. Ground truths of the “twodielTM” profile and the inversion results
by two ANNs when they are trained by datasets with different sizes. The
results in the first row are reconstructed by the semiphysics-driven ANN. The
results in the second row are reconstructed by the purely data-driven ANN.
(a) and (g) Ground truth. (b) and (h) N = 50. (c) and (i) N = 100. (d) and
(j) N = 200. (e) and (k) N = 500. (f) and (l) N = 1000.

with the increase in the training dataset size, the inversion
accuracy is also improving. These phenomena are the same as
those observed in the numerical results.

V. CONCLUSION, DISCUSSION, AND FUTURE WORK

In this article, a semiphysics-driven ANN with the approx-
imate sensitivity matrix embedded inside is proposed, and
its performance is compared with a purely data-driven ANN,
which has the exact same architecture. The difference between
two ANNs lies in their first fully connected subnets. In the
semiphysics-driven ANN, the first subnet is the BA solver,
and its parameters are fixed in the training. In other words,
its solution depends on EM scattering physics and has no
relationship with training data. By contrast, in the purely
data-driven ANN, the first subnet is trained along with the
whole ANN. Both handwritten numeral and letter datasets are
used to test two ANNs. Their performance comparisons are
summarized as follows.

1) For scatterers with low contrasts, both the inver-
sion accuracy and the generalization ability of the
semiphysics-driven ANN are better than those of the
purely data-driven ANN if the training dataset size is
small. The discrepancy is gradually weakened as the
dataset size increases. This is because the BA solver
is physics-driven, and it can provide good preliminary
scatterer profiles for the following U-Net. Therefore, the
U-Net can produce reliable inversion results even if it
is trained by a limited number of samples. However,
because the purely data-driven ANN completely depends
on the training data and can only learn the nonlinear
mapping between the scattered field data and the scat-
terer model parameters in the training, only when it is
trained by enough samples, its network parameters can
be sufficiently optimized.

2) For scatterers with high contrasts, both the
semiphysics-driven ANN and the purely data-driven
ANN fail to obtain reliable scatterer profiles if the
training dataset size is small. The nonlinear relationship
between the scattered field data and the scatterer
model parameters cannot be overcome by the BA
solver. It is also difficult for the purely data-driven
ANN to learn it if the training samples are limited.
However, the purely data-driven ANN outperforms
the semiphysics-driven ANN for both the inversion
accuracy and the generalization ability if the training
dataset size is large enough. The key reason is that

the BA solver distorts the inverted profile too much
if the scatterer contrast is too high. As a result, the
following U-Net cannot distinguish the distorted profile.
This drawback is especially obvious in the tests for
generalization ability since the handwritten letters
are far from the handwritten numerals. By contrast,
because the first subnet in the purely data-driven ANN
is effectively trained when there are enough samples,
it successfully learns the nonlinear mapping between the
scattered field data and the scatterer model parameters.

3) The training time in each epoch is roughly the same for
both ANNs although their trainable network parameters
are obviously different. However, due to the limited size
of GPU memory, only a limited number of samples
can be fed to the GPU. A dataset with a larger size
will cost more time in the training. In this sense,
the semiphysics-driven ANN outperforms the purely
data-driven ANN for the training cost when the scatterer
contrast is low.

From the above discussion, we can see that the bottleneck
of the semiphysics-driven ANN is the BA solver. Because
its inversion has large errors when the scatterer contrast is
high, the following U-Net cannot benefit from the preliminary
model parameters provided by it. Therefore, future work will
be focused on the improvement of the physics-driven module.
A physics-driven mathematical equation solver that needs
limited network model parameters to depict but has strong
adaptability to all kinds of EM scattering scenarios is desired.
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